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Abstract

The application of an Electronic Tongue for the classification of cava samples based on the different ageing time is reported. As
such, voltammetric responses were obtained from an array of six bulk-modified graphite-epoxy electrodes, which exhibited marked
mix-responses towards the different samples. Obtained responses were then preprocessed employing FFT and the resulting
coefficients were input to a LDA model which allowed the classification of the samples according to its vintage time. Besides, a
quantitative model employing ANNs was built for the prediction of the total amount of sugar present in the samples, a parameter

also used to classify cava samples.
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1. Introduction

Cava is a sparkling wine under the denomination of
origin status (DO) produced mostly in Catalonia,
specially in Penedés region, following the traditional
method (méthode champenoise) [1]. That is the same than
the one for French Champagne, but adapted to the local
varieties of Catalonia.

Given its DO status, cava is subjected to quality checks
carried out by the technical services of the regulatory
board; the latter has the attributions to assess that
producers comply with the specific technical conditions
to produce both the cuvée and the cava, as well as their
specific type of labels [2]. These controls include the
whole production process, from the grapes to the bottling;
i.e. they start in the vineyards assessing grape varieties;
continue controlling volumes of production and
monitoring of its quality; and last until the bottles
stoppering and labelling in the cellar (cava must be
marked with the month and year of the operation) so as to
guarantee the minimum ageing periods required by the
Regulations are fulfilled.

The characteristics of cavas will depend on the
differing variety combinations, the vintages and also the
different ageing periods [3]. Mainly, it can be categorized

depending on three factors. The first one deals with the
grape varieties used or its “colour”, viz. it may be white
or rosé. Secondly, it can also be classified according to its
level of dryness; these ratings refer to the amount of
sugar added during its production. In this case, cava can
be categorized as Brut nature (<3 g-L'l, no added sugar),
Extra Brut (0-6 g-L™), Brut (<15 g-L™"), Extra Dry (12-20
g'L'h, Dry (17-35 g-L™"), Demi-dry (33-50 g-L") or
Sweet (>50 g'L') [2]. Lastly, cava can also be
distinguished according to the ageing time on yeast lees
in bottle (crianza); namely, cava or jove (young; aged for
9 months or more in the same cellars), Reserva (>15
months) and Gran Reserva (>30 months) [2].
Additionally, the indication “Gran Reserva” may only be
used for Brut Nature, Extra Brut and Brut. In all cases,
the label must necessarily show this indication and the
year of the harvest. In this respect, Cava is the only
sparkling wine which can bear this distinction.

Therefore, to qualify such categories, cavas are
subjected to special quality controls including sensory
and analytical examinations, a process during which
regular inspections, stock statements and verification of
movements are made. Nevertheless, despite all those
controls, there is a demand of new analytical low-cost
methods, to be used specially for screening purposes,
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with high sensitivity, good selectivity and fast response
needed to assess they guarantee quality control standards
or to detect any fraud, either during or after its
elaboration.

Particularly, this is critical in the case of the ageing,
were unfortunately there is a lack of methods able to
classify such samples given the difficulties to perform
this assessment using classical analytical techniques as
there is not any specific compound primarily responsible
for their class; hence, being usually performed by a
skilled sensory panel.

On that account, from the late 1990s a new concept in
the field of sensors has appeared to tackle these
problems: Electronic Tongues (ETs) [4]. These analytical
systems are inspired in the taste sense of mammals,
where a few receptors can respond to a large variety of
substances. This principle is coupled with complex data
treatment applied in the brain, which allows to quantify
or to classify a large amount of substances [5, 6]. These
biomimetic  systems, opposed to  conventional
approaches, are directed towards the combination of low
selectivity sensors array (or with cross response features)
in order to obtain some added value in the generation of
analytical information.

Within the context, ETs are arising as a promising
approach to analyze liquid samples [7, 8], which have
already been successfully applied to the classification of
several alcoholic beverages such as wines [9], cava wines
[10], brandies [11] or beers [12, 13], between others.
Moreover, they have also been used for the detection of
inappropriate handling practices or adulteration processes
in wine [14, 15]; and even the quantification of several
analytical parameters such as phenolic content [16, 17].

The main goal of the present work is the application of
an ET towards the classification of cava samples
according to its ageing time; i.e. to distinguish Gran
Reserva, Reserva and young cavas in order to obtain an
analytical tool able to easily detect frauds. The method
proposed herein couples an array of bulk modified
voltammetric sensors which allowed the extraction of the
samples characteristic fingerprint, with chemometric
tools such as Fast Fourier Transform for feature
extraction and Linear Discriminant Analysis or Artificial
Neural Networks for, respectively, build the qualitative
and quantitative prediction models.

2. Materials and Methods
2.1. Samples under study

A total set of 65 cava wine samples were analyzed. Those
samples were selected according to its type, taking into

account vintage time according to the regulations of
Consell Regulador del Cava [2]: “young” cavas (9 to 15
months), “Reserva” (15 to 30 months) and “Gran
Reserva” (more than 30 months). Accordingly, the set
was formed by 16 Gran Reserva, 24 Reserva and 25
young cava wines samples.

Those samples were mainly from Penedés region (as is
the region where it’s mostly produced), and obtained
mainly from Macabeu, Parellada and Xarel-lo grape
varieties, although Chardonnay or Subirat grapes may
also be used; that is, the five different grape varieties
authorised by Consell Regulador del Cava [2]. In this
sense, Table S1 summarizes information about the cava
wines under study.

Additionally, one Champagne (French sparkling wine)
sample was included in the set as outlier. Even its
differentiation was not the aim of the present study, this
was done given different regulations apply for both Cava
and Champagne, hence to check the response of the ET
towards it. While at the same time, its usage as control
sample along the experiment, also allowed to assess the
repeatability of the ET response.

2.2. Reagents and solutions

All reagents used were analytical grade and all solutions
were prepared using deionised water from a Milli-Q
system (Millipore, Billerica, MA, USA). Potassium
chloride was purchased from Merck KGaA (Darmstadt,
Germany). Cobalt (II) phtalocyanine, polyaniline,
polypyrrole, copper and platinum nanoparticles (<50
nm), which were used as electrode modifiers, were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.3. Reference methods

To further assess the ET capabilities in the analysis of
cava wines, those were also analyzed by classical
methods to obtain additional quantitative analytical
information that may complement ET qualitative
response if their level could be modelled properly.
Particularly, two parameters were considered: the total
amount of sugar, related to level of dryness and total dry
extract which is related to all the compounds added or
present in the wine.

2.3.1. Total sugars

The analysis of total sugar content was made by Fourier
transform infrared spectroscopy (FTIR) with a WineScan
FT 120 (FOSS, Barcelona, Spain), which was previously
calibrated according to official OIV methods [18, 19].
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2.3.2. Total dry extract

Total dry extract or total dry matter includes all matter
which is non-volatile under specified physical conditions,
which must be such that the matter forming the extract
undergoes minimal alteration while the test is being
carried out. This extract was calculated indirectly from
the specific density and the alcohol by volume (abv)
degree of the wine according to regulated methods [18,
19], and expressed in grams per litre.

2.4. Electrochemical measurements
2.4.1. Electrode array

An array of 6 graphite-epoxy voltammetric sensors made
with different modifiers added to the bulk mixture was
selected according with previous studies in our laboratory
with cava wines and wines [10, 20].

Standard graphite-epoxy composites were prepared
using 50 pm particle size graphite powder (BDH
laboratory Supplies, UK) and Epotek H77 resin and
hardener (both from Epoxy Technology, USA) [21]. In
this manner, the first was a carbon transducer, and five of
them were modified by adding components as
nanoparticles of copper and platinum, conducting
polymers in powder like polyaniline and polypyrrole, or
cobalt (II) phtalocyanine — one component per sensor.

Those modifiers were selected based on previous
reported studies with wines, either from other research
groups or from our laboratories, in order to obtain a
variety of electrodes with significant cross-selectivity and
complementary electroactive properties that allow the
obtaining of rich information to enhance modelling
capabilities [14]; a desired situation in ETs applications.

From an electroanalytical point of view, electrodes
modified with phthalocyanines (mainly CoPc and its
derivatives) are interesting for being efficient
electrocatalysts in the determination of many important
inorganic, organic or biological compounds [22].
Similarly, in the last few years, nanoparticles have
emerged as interesting electroactive materials in
electroanalysis; these are an alternative to bulk metals,
with catalytic and electrocatalytic peculiarities, mainly
derived from their higher surface/mass ratio [14]. Lastly,
conducting polymers represent interesting electrode
modifying materials; their advantages are ascribed to
their antifouling and electrocatalytic properties, as well to
their high sensitivities and low detection limits [23].

Consequently, the type of electroactive compounds
interacting with these sensors are essentially reducing

sugars, phenolic compounds and other antioxidants
presents in the sample [10, 20], as previously observed.

2.4.2. Measurement cell

The measurement cell was formed by the 6-sensor
voltammetric array and a reference double junction
Ag/AgCl electrode (Thermo Orion 900200, Beverly, MA,
USA) plus a commercial platinum counter electrode
(Model 52-67, Crison Instruments, Barcelona, Spain).
Voltammetric measurements were taken using a
6-channel AUTOLAB  PGSTAT20 (Ecochemie,
Netherlands), in a multichannel configuration, using its
GPES Multichannel 4.7 software package.

2.4.3. Measurement cell

Prior to perform cava samples measurements, electrodes
were first cycled in saline solution (i.e. 10mM KCI) in
order to get stable voltammetric responses, ensuring
reproducible signals from the ET array. Afterwards, an
aliquot of 25 ml of cava wine was directly used for each
measurement, without any sample pretreatment. Once the
cava bottles were opened, measures were carried out after
a few minutes (ca. 5 min at room temperature) in order to
minimize the formation of bubbles onto the electrode
surface. That is, no specific removal of oxygen or CO,
was done, but minimization of distortions by air bubbles
was attempted.

Then, a complete cyclic voltammogram was recorded
for each sample by cycling the potential between -1.0V
and +1.3V vs. Ag/AgCl with a step potential of 9 mV and
a scan rate of 100 mV-s'. Besides, all experiment
measurements were carried out without performing any
physical surface regeneration of the working electrodes.
In this sense, an electrochemical cleaning stage was
carried out between each measurement to prevent any
cumulative effect of impurities on the working electrode
surfaces [10]. For this, a conditioning potential of +1.5V
was applied during 40s in a cell containing 25 ml of
distilled water. This step permitted to minimize the
electrode fouling, checking that the original signal
(baseline) was recovered after each measurement.

2.5. Data processing

Chemometric processing of the data was done in
MATLAB 7.1 (MathWorks, Natick, MA) using specific
routines written by the authors, and also Neural Network
Toolboxes (v.4.0.6). Sigmaplot (Systat Software Inc,
California, USA) was used for graphic representations of
data and results.
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On the one hand, Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) were both used
for the qualitative analysis of the results; while on the
other hand, quantitative analysis was achieved by means
of Artificial Neural Networks (ANNSs). Afterwards, once
the corresponding model was generated (either the LDA
or ANN model), it could be applied for the prediction
(either qualitative or quantitative values) from new
samples by simply introducing the readings of the sensors
into the model, hence obtaining a powerful analytical tool
for rapid screening of cava wine samples.

In all cases, prior to the building of the models, and in
order to reduce the large data set generated for each
sample, a preprocessing stage employing the Fast Fourier
Transform (FFT) was used to compress the original
sensors’ information [17].

PCA allows the projection of the information carried by
the original variables onto a smaller number of
underlying  (“latent”)  variables called principal
components (PCs) with new coordinates called scores,
obtained after data transformation [24]. Then by plotting
the PCs, one can view interrelationships between the
different samples, and detect and interpret sample
patterns, groupings, similarities or differences.

LDA is closely related to PCA as they both look for
linear combinations of variables which best explain the
data [25]. However, the main difference lies in the fact
that LDA explicitly attempts to model the difference
between the classes of data; while PCA does not take into
account any difference between classes, providing only a
visualization of the variability of the data, not implying
any clustering of it, although formation of groups of
samples can be a possible result. That is, the use of a
supervised method instead of an unsupervised one in the
machine learning task [26]. For this reason, PCA is
normally used just as a visualization tool that permits to
check if the samples group together in classes, and cannot
be considered as a properly pattern recognition method,
whereas to be used as a classifier it must be coupled with
a modelling tool such as ANNs. On that account, another
option is the use of an actual classifier such as LDA;
which provides both a visualization of samples clustering
and builds the qualitative model acting as the classifier.

The last tool used, ANNs, were designed to mimic the
reasoning of the human brain and have been applied to
quantitative and qualitative analysis during the last
decades [4]. They consist of a number of simple
processing units (or neurons) linked by weighted
modifiable interconnections [27]. As LDA, and imitating
the biological learning, they require a training process
where the weights of those connections are adjusted, in
this way building a model that will allow to carry out the

prediction of the desired parameters (either qualitative or
quantitative). ANNs main advantages include a high
modelling performance, being specially suited to non-
linear sensor responses, and the fact of being very much
related to human pattern recognition.

3. Results and discussion
3.1. Voltammetric responses and feature extraction

Under the conditions and procedure described in section
2.4, samples were measured employing the ET array,
obtaining a whole cyclic voltammogram for each of the
sensors. An extract of the results corresponding to the
obtained voltammograms for the different types of cava
analyzed is shown in Figure 1. As can be seen, complex
and highly overlapped signals are obtained along the
whole voltammogram, with differentiated signals for the
different kinds of sensors. Besides, it could be seen how
some samples present similar voltammetric responses in
specific regions along the voltammogram; also, that
analogous resemblances are repeated along the whole
recorded signal, but between different samples.

E.g. in Figure 1A it could be seen how Gran Reserva,
Reserva and young cavas present clearly differentiated
response for the cathodic wave in the region from -0.5 V
to -1.0V; meanwhile, Champagne sample presents a more
similar response to young cavas, although still showing
slightly differentiated response, but in the region from
-0.75V to -1.0V. The later behaviour could be somehow
expected given both types of sparkling wine are produced
following the same procedure, but employing different
grape varieties; thus, expecting more resemblances with
young cavas as, albeit not existing such classification for
Champagne, they were aged for the same period time.
Whereas differentiated responses shown in the anodic
wave could be attributed to the polyphenolic content of
samples [20], although no such resemblances between
samples for the same class are observed. Similar trends
were observed for other sensors such as cobalt (II)
phtalocyanine (Figure 1B) or polypyrrole (Figure 1E). On
the other hand, platinum (Figure 1C) and copper
nanoparticles (Figure 1F) sensors bring completely new
information to the system, while still showing some
previous discussed resemblances; in this aspect, it should
be noticed the differentiated response observed for
platinum sensor at the anodic region close to +1V for the
Champagne sample, indicating that its discrimination
might be also possible.

Additionally, to ensure repeatability of the sensor array
response, Champagne sample was used as control sample
and its measurement was replicated four times along the
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Fig. 1. Voltammetric responses obtained with the different sensors forming the ET array for certain arbitrary cava wine samples are
shown as example. Signals provided correspond to: (A) graphite-epoxy sensor, (B) cobalt (II) phtalocyanine, (C) platinum
nanoparticle, (D) polyaniline, (E) polypyrrole and (F) copper nanoparticle modified sensors.

whole experiment; obtained voltammograms are shown
in Figure S1. As expected, small differences attained
between different replicates corroborate the fact that
different voltammetric responses are obtained depending
on the type of cava wine, and that those are not due to
sensors’ drift.

This situation, where the different sensors display marked
distinct features for the different samples is an ideal

departure point for developing an ET approach.
Nevertheless, to fully exploit all the information obtained
from each voltammogram, a preprocessing compression
step was used to reduce the high dimensionality of the
recorded signals (samples x sensors x potentials) while
preserving the relevant information. In addition to data
reduction, compression is intended for extracting
significant features from the departure information, while
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gaining many advantages in the modelling stage [28]. As
stated, in our case, this variable reduction was achieved
by means of FFT, which allowed a compression of the
original data up to 96.9% (16 coeffs. vs. 512 original
current values, per voltammogram) without any loss of
relevant information.

3.2. Classification of cava samples

To confirm the initial trends seen in the voltammetric
responses and to corroborate its analytical content, the
corresponding compressed voltammograms were
processed applying PCA analysis. Thus, a preliminary
recognition model was performed in order to display
the different kinds of cava, according to measurements
done. The PCA plot with the different clusters is
shown in Figure 2; where with the three first PCs, the
explained accumulated variance was ca. 97.8%. The
patterns in the figure evidence that cava samples are
grouped based on ageing time, with well established
clusters clearly separating the main classes of samples
corresponding to: Gran Reserva, Reserva and Young
cavas, and Champagne.

To estimate the success rate in sample identification, a
LDA model was built to act as an actual classifier given
PCA only provides a visualization of the different
grouping regions. In this case, obtained Fourier
coefficients were used as inputs to the model while the
target of the model was to distinguish between the
different types of cava and Champagne. As expected
from previous PCA graph, clear discrimination for the
four classes considered was achieved as can be seen in
Figure 3. Additionally, in this case two different models
were built; one including Champagne samples (Figure
3B) and one without them (Figure 3A).

LDA model was trained and validated using k-fold
cross-validation method with k=6 (data was split in 6
subsets, using k-1 subsets to build the model and the
remaining one as testing subset; this process is repeated k
times leaving each time out one of the k subsets, and
finally results from the different folds are averaged).
Afterwards, confusion matrix was built (Table 1),
allowing calculating also the performance of the model
by means of three different indicators: classification rate,
sensitivity and specificity. On the one hand, the first one
corresponds to the ratio between the number of samples
correctly classified and the total number of samples. On
the other hand, sensitivity is calculated as the percentage
of objects of each class identified by the classifier model,
and specificity as the percentage of objects from different
classes correctly rejected by the classifier model;
averaging those for the classes. In this case, reaching
100% for the three statistical indicators, given there were
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Table 1. Confusion matrix built according cava wine vintage
obtained using LDA model and k fold cross validation method
with k=6.
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not any false positive or false negatives.

3.3. Estimation of cava indexes

As a further ability of electronic tongue systems, a
quantitative application in order to predict compounds of
relevant significance in cava wines was also attempted.
Concretely, quantification of total sugars and total dry
extract was undertaken. As stated, cava can be mainly
classified from three different points of view, viz. its
“colour” (white or rosé), its level of dryness or vintage.
Thus, it would be very useful, from the analytical point of
view, to be able to quantify the total amount of sugar
present in the cava at the same time than its ageing (time
of aging on yeast lees), as this would give a double
functionality. That is, on one hand it allows to classify
also the samples according to its level of dryness; while
on the other hand it might also allow to confirm that the
amount of sugar added is below the amount required by
the DO to issue the Gran Reserva label [2].

As before, concentrations of the sought compounds
were modelled from the set of voltammetric responses,
previously compressed with FFT, but using ANNSs as the
modelling tool instead of LDA; therefore, building a
quantitative model rather than a qualitative one.

The first step in building the ANN model is selecting
the topology of the neural network used. Given the
difficulties to predict the optimum configuration in
advance, this consists in a trial-and-error process where
several parameters (training algorithm, number of hidden
layers, number of neurons, transfer functions, etc.) are
fine-tuned in order to find the best configuration that
optimizes the performance of the neural network model
[27].

After a systematic study optimizing those parameters,
the final architecture of the ANN model had 96 neurons
(6 sensors x 16 coeffs. obtained from the FFT analysis) in
the input layer, 4 neurons and tansig transfer function in
the hidden layer and two neurons and tansig transfer
function in the output layer, viz. the total amount of sugar
and the total dry extract.

Accuracy of the generated model was evaluated
employing 76% of the data (48 samples) for training the
model and tested with the remaining 24% (15 samples);
from a total of 65 samples, as there were two whose
reference analysis could not be performed. Afterwards,
comparison graphs of predicted vs. expected
concentrations were built, both for train and test subsets,
to check the prediction ability of the ANN (Figure 4). As
it can be observed, a satisfactory trend was obtained for
both  indexes, with regression lines  almost
indistinguishable from the theoretical ones. Additionally,



Full Paper

the obtained comparison parameters were calculated and
close to the ideal values, with intercepts near to 0 and
slopes and correlation coefficients around 1, meaning that
there are no significant differences between the values
predicted by the ANN model and those expected and
provided by the reference method.

4, Conclusions

In this work, it has been demonstrated that the
combination of voltammetric measurements with
chemometric tools is an analytically promising approach
for the characterization of cava wines according to two
main categorization parameters, i.e. its level of dryness
and ageing time (time of aging on yeast lees).

Thanks to the use of qualitative chemometric tools it
has been possible to develop a direct and simple
procedure for authentication application or detection of
frauds in cava wine -elaboration. Concretely, LDA
allowed the building of qualitative models able to classify
cava wine samples according to its vintage, while ANN
allowed the quantification of its dryness level.
Additionally, given the biomimetic character of the
developed approach, it presents a straightforward solution
to the absence of the knowledge about which compounds
are primarily responsible for the class that hinders the
development of analytical procedures for cava
categorization according to its ageing time.

Finally, future efforts with this approach may involve
its further validation (e.g. assessing the capabilities of the
ET to assess not only the class but also the ageing time),
or the miniaturization of the system.

In this fashion, ETs should be considered as an
attractive alternative to other classical methods or to
sensory panels, especially suitable for screening
purposes, with huge advantages as might be its simplicity
and low cost.
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