

Image: Control of the state of th

INTRODUCTIONS

Todd Brewer PhD, P.E. Sr. Partnership Manager, AWWA

Brian Haws, P.E. Managing Engineer Process Engineering, Regulatory, and Lab Services Division, Austin Water

WATER TREATMENT

These facilities feature advanced technology and employ a variety of **highly trained professionals**, including:

- Operations Technicians
- Maintenance Technicians
- I&C Technicians
- Process Engineers
- Control System Programmers
- Lab staff

WATER DISTRIBUTION

- Water is transmitted from the plant to the customers tap through a network of pipes and storage tanks.
- Operations crews are on call 24 / 7 to ensure uninterrupted service.

WATER SYSTEM MAINTENANCE

- A public water system has thousands of moving parts
- The durability and reliability of each infrastructure component varies
- Infrastructure Management professionals develop a strategy for timely replacement of infrastructure to minimize the potential for failure.

Water Treatment-Multiple Barriers

FACTORS INFLUENCING PERFORMANCE PARAMETERS DBP Compliant Nitrification Main Breaks Customer Complaints Energy Managemen Customer Complaint Micro Compli /Sampling Flushing Pressure Cross Connecti Disinfectant Residual Security Control Control Emergency Mgm Disinfection: Mains, Repairs Water Loss Control ost Precipitatio Inorg Accum Flushing Water Pipeline Rehab/Repla ternal Corro Control Age Storage Storage Pressure Control Water Loss Control Customer Complaints Main Breaks Internal/External Corrosion Contro Maintenance: hydrant/valve Pipeline Rehab/Repl Storage

MANAGING WATER AGE AND QUALITY

Manage Hydraulics in Storage Facilities

- Inlet /outlet configuration, baffling
- Increase turnover rate
- Pumping schedules (deep cycling)
- Mixing

Manage chemistry

- Increase chlorine residual
- Shock chlorination

 Λ

MAIN BREAKS – CONTRIBUTING FACTORS

- Aging infrastructure
 - "a significant water line bursts on average every two minutes somewhere in the country"
 - "\$334.8 billion will be needed for pipe, treatment, storage, source, and other infrastructure over the 20 year period 2007-26"
- Frost load
- Pressure surge
- Mechanical damage

<section-header><section-header><section-header><image><image><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

TREATMENT PROGRAM

- Open to surface and groundwater filtration plants of all sizes and configurations
 - <u>-Multiple barrier</u> approach for turbidity reduction – <0.1 NTU
 - -Optimize <u>all unit processes</u> for particulate removal
 - Conventional, membrane, DAF, high rate clarification, advanced oxidation (ozone, UV)

Self-Assessment Category	Questions for Gauging Optimization Status
Maintaining Valves,	Location Records: Does the system have accurate and current records that
Hydrants, and Blowoffs	document the location and attributes for all valves, hydrants, and
	blowoffs?
	Inspection and Assessment: Are all valves, hydrants, and blowoffs
	inspected and evaluated on a schedule?
	Exercise Program: Are all distribution system main valves and hydrants
	exercised and tested at least every three years (or more frequently if
	required by regulation)?
	Hydrant Repairs: Are all hydrant repairs scheduled within 24 hours of
	discovery? Are inoperable hydrants identified immediately and is this
	communicated to the fire protection authority?
	Hydrant Access: Does the system control access to hydrants and provide
	training for proper third-party use?

Lessons Learned: Changes Don't Need to be Big to be Effective

Top Distribution System Self-Assessment Report Actions

Hydraulic model calibration/availability	Improve valve exercise practices	Software system integration & record keeping
Pressure monitoring	Install chlorine analyzers	Reduce DS water age
Pump efficiency testing	Corrosion monitoring	Improve leak detection, DMA creation, water audit
Optimize flushing	Pipe inspection	Create, improve, update SOPs
Asset management	Post- precipitation control	Emergency response planning

Phase III - Directors Award

Louisville Water Company representatives accept the Directors Award At ACE13 (34 Directors Award recipients to date)

Annual Data Submission: Maintain Directors Award status, receive date tags, and become eligible for 5-, 10-, and 15- Year "longevity" awards

LESSONS LEARNED: IT CAN CHANGE UTILITY CULTURE

- Get the entire team engaged (this is the hardest but most important part)
- · Develop performance goals and tools
- Establish unit process operational guidance
- Focus on continuous improvement becomes part of the culture
- Create a culture of excellence & Be Excellent!

Utah Valley WTP performance sign - updated daily by operators

