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• Presented a generalized version of the L2HMC algorithm—consisting of a 
stack of leapfrog layers—that improves the existing approaches' flexibility 
while remaining statistically exact.


• Shown that our trained model successfully mixes between modes of a 
two-dimensional  Gaussian Mixture Model while HMC remains stuck in a 
local mode.


• Looked at applying the described approach to a two-dimensional U(1) 
lattice gauge theory.


• Saw that for this lattice gauge model, our trained sampler is capable of 
significantly outperforming traditional HMC across a range of coupling 
constants.

Conclusion

• Our models were trained using Horovod on the ThetaGPU 
supercomputer at the Argonne Leadership Computing Facility (ALCF). A 
typical training run on 1 node ( NVIDIA A100 GPUs) using a batch 
size , hidden layer shapes  for each of the 

 leapfrog layers, on a  lattice for  training steps 
takes roughly  hours to complete.

8 ×
M = 2048 [256,256,256]

NLF = 10 16 × 16 5 × 105

24

Training Costs

• Going forward we plan to continue development of this approach towards 
more complex theories in higher space-time dimensions (e.g. 2D, 4D 
SU(3)).

Next Steps


xi+1 = {x′￼ w/ prob A(ξ′￼|ξ)
x w/ prob 1 − A(ξ′￼|ξ)

Hamiltonian Monte Carlo (HMC)

A(ξ′￼|ξ) ≡ min {1,
p(ξ′￼)
p(ξ)

∂ξ′￼

ξT }

1. Half-step ( ):    


2. Full-step ( ):      


3. Half-step ( ):    

v ṽ = v − ε
2 ∂xS(x)

x x′￼= x + εṽ
v v′￼= ṽ − ε

2 ∂xS(x′￼)

  (i.) Leapfrog update  (j.) Metropolis-Hastings

where

•  Goal: Sample from (difficult) target distribution: 


•  Method: 

1.For U , build chain  such that 

 as 


2. Introduce , write joint distribution: 




3. Evolve the system of equations ,  using the 

leapfrog integrator (i.) along :

4. Accept or reject proposal configuration  using Metropolis-Hastings 

test (j.)

p(x) ∝ e−S(x)

x ∈ (1)n x0 → x1 → , …, → xN

xN ∼ p(x) N → ∞
v ∼ 𝒩 (0,In) ∈ ℝn

p(x, v) = p(x)p(v) ∝ e−S(x)e− 1
2 vTv = e−H(x,v)

·x = ∂H
∂v

·v = − ∂H
∂x

H = const
ξ′￼

ξ ≡ (x, v) → (x′￼, v′￼) = ξ′￼
leapfrog layer

input output

• We can write a complete leapfrog update as: (compare with HMC (i.))

• Markov Chain Monte Carlo (MCMC) methods are pervasive throughout 
science and are used in applications ranging from epidemiological 
modeling to election forecasting.


• Recent developments in ML, together with ever-more-capable hardware 
has led to a resurgence in developing faster, more efficient simulation 
techniques.


• In particular, the development of invertible NN architectures has opened 
the flood-gates for new approaches that are capable of outperforming 
traditional techniques on particularly challenging distributions.


• Simulations in lattice gauge theory / lattice QCD are limited by our ability 
to generate independent configurations, making it a prime target for 
testing novel approaches.


• We propose a generalized version of the L2HMC algorithm [2], and look at 
applying it to generate configurations for a two-dimensional  lattice 
gauge theory.

U(1)

Motivation

• For reversibility we split the  update into two sub-updates using a binary 
mask,     and update each half of  sequentially.


• We've introduced the shorthand notation for the networks' inputs: 

, 


• the Jacobian factor of the update , can be easily computed to give:                 

, .

x
mk = 1−m̄k x

ζvk
≡ (xk, ∂xSβ(x)) ζxk

≡ (mk ⊙ xk, vk )
ξ → ξ′￼

∂v′￼′￼k

∂vk
= exp ( 1

2 εk
v sk

v(ζvk) ∂x′￼′￼k

∂xk
= exp (εk

x sk
v(xk))

x′￼k = ⊙ xk+ ⊙Λ±
k (xk ; ζxk

)m̄k mk

3. Full-step (2nd half of ):x
4. Half-step :(v)

Generalized leapfrog update
v′￼k = Γ±

k (vk; ζvk
)

x′￼′￼= ⊙ Λ±
k (x′￼k ; ζx′￼k

) + ⊙x′￼km̄k mk

1. Half-step :(v)
2. Full-step (1st half of ):x

v′￼′￼k = Γ±
k (v′￼k; ζv′￼k

)

• We begin by introducing distinct neural networks, called leapfrog layers 
for each leapfrog step of the HMC update, as shown in Figure (a).

‣Denote the leapfrog step (layer) by a discrete index 

 where  is the total number of leapfrogs.

• Introduce  (direction—forward/backward) and denote the 

complete state ,  then the target distribution is given by 
.


• Each leapfrog step transforms  by 
passing it through  leapfrog layer (note the direction,  is persistent).


• Consider the forward  direction2 and introduce the notation:

k = {0,1,…, NLF} ∈ ℕ NLF
d ∼ 𝒰( + , − )

ξ = (x, v, d)
p(ξ) = p(x) ⋅ p(v) ⋅ p(d)

ξk ≡ (xk, vk, dk) → (x′￼′￼k , v′￼′￼k , dk) = ξ′￼′￼k
kth dk

d = + 1

Method

Figure (a.) Illustration 
of the  leapfrog 
layer.

kth

Abstract

v′￼k ≡ Γ+
k (vk; ζvk

) = vk ⊙ exp ( εk
v

2 sk
v(ζvk

))−
εk

v

2 [∂xSβ(xk) ⊙ exp (εk
v qk

v(ζvk
)) + tk

v(ζvk
)]

x′￼k ≡ Λ+
k (xk; ζxk

) = xk ⊙ exp (εk
x sk

x(ζxk
)) + εk

x [v′￼K ⊙ exp (εk
x qk

x(ζxk
)) + tk

x(ζxk
)]

• Wilson action:
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• We generalize the Hamiltonian Monte Carlo (HMC) algorithm with a stack 
of trainable neural network (NN) layers and evaluate its ability to sample 
from different topologies in a two-dimensional lattice gauge theory. We 
demonstrate that our model is able to successfully mix between modes of 
different topologies, significantly reducing the computational cost required 
to generate independent gauge field configurations.

Method (contd.)
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2To obtain the expression for the reverse direction, we can invert each of the 
 functions and perform the updates in the opposite orderΓ− ≡ (Γ+)−1, Λ− ≡ (Λ+)−1

[1]

• Let , with       
denote the link variables, where  is a link at 
the site  oriented in direction .

Uμ(n) = eixμ(n) ∈ U(1) xμ(n) ∈ [−π, π]
xμ(n)

n ̂μ
• Target distribution:

 pt(x) ∝ e−γt ⋅ Sβ(x)

 Sβ(x) = β∑P 1 − cos xP

where  is 
given in  

A(ξ′￼|ξ)
HMC (j.)

Application to Lattice Gauge Theory

• Loss function: We maximize the expected squared charge difference

• Topological Charge: Each lattice has a charge 𝒬ℤ ∈ ℤ

(d.) 
plaquette

ℒ(θ) = 𝔼p(ξ) [−δ(ξ′￼, ξ) ⋅ A(ξ′￼|ξ)]
δ(ξ′￼, ξ) = [𝒬ℝ(x′￼) − 𝒬ℝ(x)]2

where:

⌊xP⌋ = xP − 2π ⌊ xP + π
2π ⌋

𝒬ℤ = 1
2π ∑P ⌊xP⌋ ∈ ℤ,

𝒬ℝ = 1
2π ∑P sin xP ∈ ℝ

discrete, hard 
to work with
continuous, 

differentiable

xP = [xμ(n) + xν(n + ̂μ)

• For target distributions in Euclidean space, , we define a loss 
function that encourages our sampler to move large distances in the 
phase space.


• To do this, we can maximize the expected squared jump distance (ESJD): 

x ∈ ℝn

ℒ(θ) ≡ 𝔼p(ξ) [δ(ξ, ξ′￼) ⋅ A(ξ′￼|ξ)] ,  .δ(ξ, ξ′￼) ≡ ∥x − x′￼∥2

where  are (collectively) the weights in the NNθ

Figure (b.) Illustration of contours from the true target distribution vs samples 
obtained from both the trained model and generic HMC. We can see that HMC fails 
to mix between the two modes of the distribution whereas the trained model 
efficiently jumps between them.

−xμ(n + ̂ν) − xν(n)]

• Introduce annealing factor     

  , with γt ∥γt∥ ≤ 1

Figure (k.) Illustration 
of the average 
plaquette,  vs 
leapfrog step for 
different values of . 
Note that at , the 
energy is shifted down 
past the expected 
value at .

⟨xP⟩

β
β = 7

β = 3

• To measure the computational cost of our approach we use the 
integrated autocorrelation time , which can be interpreted as the 
number of trajectories before an independent sample is drawn.


• We can see in Figure (e.) that the trained model consistently outperforms 
generic HMC across .

τ𝒬ℤ
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Figure (f.) Illustration of the integer valued topological charge  vs MC step for 
both HMC (black) and the trained model (blue).

𝒬ℤ

Results

Figure (g.1) The variation 
in the average plaquette 

 at intermediate 
leapfrog layers.
⟨xP − x*P ⟩

Figure (g.3) The real-
valued topological charge 

 at intermediate 
leapfrog layers.
𝒬ℝ

• In order to understand the mechanism driving this improved behavior, we 
looked at how different physical quantities evolve during a single trajectory 
in the trained model as shown in Figures (g.1,2,3).


• We see that our sampler artificially increased the energy of the physical 
system during the first half of the trajectory, before returning back to its 
original physical value.


• We believe that this ability to vary the energy during the trajectory helps 
the sampler to overcome energy barriers between topological sectors 
whereas HMC remains stuck.
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Figure (g.2) The adjusted 
energy  at 
intermediate leapfrog 
layers.
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Figure (e.) Estimate of the integrated autocorrelation time  vs , scaled 

by  to account for simulation cost.

NLF ⋅ τ𝒬ℤ
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Algorithm 1: Training Procedure
input :

1. Loss function, L✓(⇠0, ⇠, A(⇠0|⇠))
2. Batch of initial states, x

3. Learning rate schedule, {↵t}Ntrain

t=0

4. Annealing schedule, {�t}Ntrain

t=0

5. Target distribution, pt(x) / e��tS�(x)

Initialize weights ✓
for 0  t < Ntrain :

resample v ⇠ N (0, )
resample d ⇠ U(+,�)
construct ⇠0 ⌘ (x0, v0, d0)
for 0  k < NLF :

propose (leapfrog layer) ⇠0k  ⇠k

compute A(⇠0|⇠) = min
n
1, p(⇠

0)
p(⇠)

��� @⇠0

@⇠T

���
o

update L L✓(⇠0, ⇠, A(⇠0|⇠))
backprop ✓  ✓ � ↵tr✓L

assign xt+1  
(
x0 with probability A(⇠0|⇠)
x with probability (1� A(⇠0|⇠)).
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