
Argonne National Laboratory is a U.S.
Department of Energy laboratory 
managed by UChicago Argonne, LLC.

References

• Presented a generalized version of the L2HMC algorithm—consisting of a
stack of leapfrog layers—that improves the existing approaches' flexibility
while remaining statistically exact.

• Shown that our trained model successfully mixes between modes of a
two-dimensional Gaussian Mixture Model while HMC remains stuck in a
local mode.

• Looked at applying the described approach to a two-dimensional U(1)
lattice gauge theory.

• Saw that for this lattice gauge model, our trained sampler is capable of
significantly outperforming traditional HMC across a range of coupling
constants.

Conclusion

• Our models were trained using Horovod on the ThetaGPU
supercomputer at the Argonne Leadership Computing Facility (ALCF). A
typical training run on 1 node (NVIDIA A100 GPUs) using a batch
size , hidden layer shapes for each of the

 leapfrog layers, on a lattice for training steps
takes roughly hours to complete.

8 ×
M = 2048 [256,256,256]

NLF = 10 16 × 16 5 × 105

24

Training Costs

• Going forward we plan to continue development of this approach towards
more complex theories in higher space-time dimensions (e.g. 2D, 4D
SU(3)).

Next Steps

xi+1 = {x′￼ w/ prob A(ξ′￼|ξ)
x w/ prob 1 − A(ξ′￼|ξ)

Hamiltonian Monte Carlo (HMC)

A(ξ′￼|ξ) ≡ min {1,
p(ξ′￼)
p(ξ)

∂ξ′￼

ξT }

1. Half-step ():

2. Full-step ():

3. Half-step ():

v ṽ = v − ε
2 ∂xS(x)

x x′￼= x + εṽ
v v′￼= ṽ − ε

2 ∂xS(x′￼)

 (i.) Leapfrog update (j.) Metropolis-Hastings

where

• Goal: Sample from (difficult) target distribution:

• Method:

1.For U , build chain such that

 as

2. Introduce , write joint distribution:

3. Evolve the system of equations , using the

leapfrog integrator (i.) along :

4. Accept or reject proposal configuration using Metropolis-Hastings

test (j.)

p(x) ∝ e−S(x)

x ∈ (1)n x0 → x1 → , …, → xN

xN ∼ p(x) N → ∞
v ∼ 𝒩 (0,In) ∈ ℝn

p(x, v) = p(x)p(v) ∝ e−S(x)e− 1
2 vTv = e−H(x,v)

·x = ∂H
∂v

·v = − ∂H
∂x

H = const
ξ′￼

ξ ≡ (x, v) → (x′￼, v′￼) = ξ′￼
leapfrog layer

input output

• We can write a complete leapfrog update as: (compare with HMC (i.))

• Markov Chain Monte Carlo (MCMC) methods are pervasive throughout
science and are used in applications ranging from epidemiological
modeling to election forecasting.

• Recent developments in ML, together with ever-more-capable hardware
has led to a resurgence in developing faster, more efficient simulation
techniques.

• In particular, the development of invertible NN architectures has opened
the flood-gates for new approaches that are capable of outperforming
traditional techniques on particularly challenging distributions.

• Simulations in lattice gauge theory / lattice QCD are limited by our ability
to generate independent configurations, making it a prime target for
testing novel approaches.

• We propose a generalized version of the L2HMC algorithm [2], and look at
applying it to generate configurations for a two-dimensional lattice
gauge theory.

U(1)

Motivation

• For reversibility we split the update into two sub-updates using a binary
mask, and update each half of sequentially.

• We've introduced the shorthand notation for the networks' inputs:

,

• the Jacobian factor of the update , can be easily computed to give:

, .

x
mk = 1−m̄k x

ζvk
≡ (xk, ∂xSβ(x)) ζxk

≡ (mk ⊙ xk, vk)
ξ → ξ′￼

∂v′￼′￼k

∂vk
= exp (1

2 εk
v sk

v(ζvk) ∂x′￼′￼k

∂xk
= exp (εk

x sk
v(xk))

x′￼k = ⊙ xk+ ⊙Λ±
k (xk ; ζxk

)m̄k mk

3. Full-step (2nd half of):x
4. Half-step :(v)

Generalized leapfrog update
v′￼k = Γ±

k (vk; ζvk
)

x′￼′￼= ⊙ Λ±
k (x′￼k ; ζx′￼k

) + ⊙x′￼km̄k mk

1. Half-step :(v)
2. Full-step (1st half of):x

v′￼′￼k = Γ±
k (v′￼k; ζv′￼k

)

• We begin by introducing distinct neural networks, called leapfrog layers
for each leapfrog step of the HMC update, as shown in Figure (a).

‣Denote the leapfrog step (layer) by a discrete index

 where is the total number of leapfrogs.

• Introduce (direction—forward/backward) and denote the

complete state , then the target distribution is given by
.

• Each leapfrog step transforms by
passing it through leapfrog layer (note the direction, is persistent).

• Consider the forward direction2 and introduce the notation:

k = {0,1,…, NLF} ∈ ℕ NLF
d ∼ 𝒰(+ , −)

ξ = (x, v, d)
p(ξ) = p(x) ⋅ p(v) ⋅ p(d)

ξk ≡ (xk, vk, dk) → (x′￼′￼k , v′￼′￼k , dk) = ξ′￼′￼k
kth dk

d = + 1

Method

Figure (a.) Illustration
of the leapfrog
layer.

kth

Abstract

v′￼k ≡ Γ+
k (vk; ζvk

) = vk ⊙ exp (εk
v

2 sk
v(ζvk

))−
εk

v

2 [∂xSβ(xk) ⊙ exp (εk
v qk

v(ζvk
)) + tk

v(ζvk
)]

x′￼k ≡ Λ+
k (xk; ζxk

) = xk ⊙ exp (εk
x sk

x(ζxk
)) + εk

x [v′￼K ⊙ exp (εk
x qk

x(ζxk
)) + tk

x(ζxk
)]

• Wilson action:

Deep Learning Hamiltonian Monte Carlo
Sam Foreman1, Xiao-Yong Jin2, James Osborn3

Building topological samplers for lattice gauge theories

1 foremans@anl.gov 2 xjin@anl.gov 3 osborn@alcf.anl.gov

bit.ly/l2hmc-qcd

1. Sam Foreman, Xiao-Yong Jin, James Osborn. Deep Learning
Hamiltonian Monte Carlo. (code: github.com/saforem2/l2hmc-qcd)

2. Daniel Lévy, M. Hoffman, and Jascha Sohl-Dickstein. Generalizing
Hamiltonian Monte Carlo with Neural Networks. abs/1711.09268, 2018.

3. Michael S Albergo, Denis Boyda, Daniel C Hackett, Gurtej Kanwar, Kyle
Cranmer, Sébastien Racaniére, Danilo Jimenez Rezende, and Phiala E
Shanahan. Introduction to Normalizing Flows for Lattice Field Theory
arXiv:2101.08176, 2021.

4. MS Albergo, G Kanwar, and PE Shanahan. Flow-based generative
models for Markov Chain Monte Carlo in Lattice Field Theory. Physical
Review D, 100(3):034515, 2019.

5. Denis Boyda, Gurtej Kanwar, Sébastien Racaniére, Danilo Jimenez
Rezende, Michael S Albergo, Kyle Cranmer, Daniel C Hackett, and
Phiala E Shanahan. Sampling using SU(n) Gauge Equivariant Flows.
arXiv:2008.05456, 2020.

6. Gurtej Kanwar, Michael S Albergo, Denis Boyda, Kyle Cranmer, Daniel C
Hackett, Sébastien Racaniére, Danilo Jimenez Rezende, and Phiala E
Shanahan. Equivariant Flow Based Sampling for Lattice Gauge Theory
Physical Review Letters, 125(12):121601, 2020

• We generalize the Hamiltonian Monte Carlo (HMC) algorithm with a stack
of trainable neural network (NN) layers and evaluate its ability to sample
from different topologies in a two-dimensional lattice gauge theory. We
demonstrate that our model is able to successfully mix between modes of
different topologies, significantly reducing the computational cost required
to generate independent gauge field configurations.

Method (contd.)

Argonne National Laboratory

2To obtain the expression for the reverse direction, we can invert each of the
 functions and perform the updates in the opposite orderΓ− ≡ (Γ+)−1, Λ− ≡ (Λ+)−1

[1]

• Let , with
denote the link variables, where is a link at
the site oriented in direction .

Uμ(n) = eixμ(n) ∈ U(1) xμ(n) ∈ [−π, π]
xμ(n)

n ̂μ
• Target distribution:

 pt(x) ∝ e−γt ⋅ Sβ(x)

 Sβ(x) = β∑P 1 − cos xP

where is
given in

A(ξ′￼|ξ)
HMC (j.)

Application to Lattice Gauge Theory

• Loss function: We maximize the expected squared charge difference

• Topological Charge: Each lattice has a charge 𝒬ℤ ∈ ℤ

(d.)
plaquette

ℒ(θ) = 𝔼p(ξ) [−δ(ξ′￼, ξ) ⋅ A(ξ′￼|ξ)]
δ(ξ′￼, ξ) = [𝒬ℝ(x′￼) − 𝒬ℝ(x)]2

where:

⌊xP⌋ = xP − 2π ⌊ xP + π
2π ⌋

𝒬ℤ = 1
2π ∑P ⌊xP⌋ ∈ ℤ,

𝒬ℝ = 1
2π ∑P sin xP ∈ ℝ

discrete, hard
to work with
continuous,

differentiable

xP = [xμ(n) + xν(n + ̂μ)

• For target distributions in Euclidean space, , we define a loss
function that encourages our sampler to move large distances in the
phase space.

• To do this, we can maximize the expected squared jump distance (ESJD):

x ∈ ℝn

ℒ(θ) ≡ 𝔼p(ξ) [δ(ξ, ξ′￼) ⋅ A(ξ′￼|ξ)] , .δ(ξ, ξ′￼) ≡ ∥x − x′￼∥2

where are (collectively) the weights in the NNθ

Figure (b.) Illustration of contours from the true target distribution vs samples
obtained from both the trained model and generic HMC. We can see that HMC fails
to mix between the two modes of the distribution whereas the trained model
efficiently jumps between them.

−xμ(n + ̂ν) − xν(n)]

• Introduce annealing factor

 , with γt ∥γt∥ ≤ 1

Figure (k.) Illustration
of the average
plaquette, vs
leapfrog step for
different values of .
Note that at , the
energy is shifted down
past the expected
value at .

⟨xP⟩

β
β = 7

β = 3

• To measure the computational cost of our approach we use the
integrated autocorrelation time , which can be interpreted as the
number of trajectories before an independent sample is drawn.

• We can see in Figure (e.) that the trained model consistently outperforms
generic HMC across .

τ𝒬ℤ
int

β = 2,3,…,7

0.0 0.2 0.4 0.6 0.8 1.0
MC Step £105

°2.5

0.0

2.5

5.0

QZ

Ø = 7

Trained

HMC

Figure (f.) Illustration of the integer valued topological charge vs MC step for
both HMC (black) and the trained model (blue).

𝒬ℤ

Results

Figure (g.1) The variation
in the average plaquette

 at intermediate
leapfrog layers.
⟨xP − x*P ⟩

Figure (g.3) The real-
valued topological charge

 at intermediate
leapfrog layers.
𝒬ℝ

• In order to understand the mechanism driving this improved behavior, we
looked at how different physical quantities evolve during a single trajectory
in the trained model as shown in Figures (g.1,2,3).

• We see that our sampler artificially increased the energy of the physical
system during the first half of the trajectory, before returning back to its
original physical value.

• We believe that this ability to vary the energy during the trajectory helps
the sampler to overcome energy barriers between topological sectors
whereas HMC remains stuck.

500 1000
H °

P
log |J |

°5 0 5
QR

0
1
2
3
4
5
6
7
8

0.0 0.1 0.2
hxP ° x§

P i

9

Figure (g.2) The adjusted
energy at
intermediate leapfrog
layers.

H − log |𝒥 |

2 4 6 8 10 12

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ø = 3
Ø = 4
Ø = 5
Ø = 6
Ø = 7

⟨xP⟩

leapfrog step

Figure (e.) Estimate of the integrated autocorrelation time vs , scaled

by to account for simulation cost.

NLF ⋅ τ𝒬ℤ
int β

NLF

2 3 4 5 6 7
Ø

102

103

104

105

N
L
F

·ø
in

t

HMC (avg)
Trained (avg)

Algorithm 1: Training Procedure
input :

1. Loss function, L✓(⇠0, ⇠, A(⇠0|⇠))
2. Batch of initial states, x

3. Learning rate schedule, {↵t}Ntrain

t=0

4. Annealing schedule, {�t}Ntrain

t=0

5. Target distribution, pt(x) / e��tS�(x)

Initialize weights ✓
for 0  t < Ntrain :

resample v ⇠ N (0,)
resample d ⇠ U(+,�)
construct ⇠0 ⌘ (x0, v0, d0)
for 0  k < NLF :

propose (leapfrog layer) ⇠0k ⇠k

compute A(⇠0|⇠) = min
n
1, p(⇠

0)
p(⇠)

��� @⇠0

@⇠T

���
o

update L L✓(⇠0, ⇠, A(⇠0|⇠))
backprop ✓ ✓ � ↵tr✓L

assign xt+1
(
x0 with probability A(⇠0|⇠)
x with probability (1� A(⇠0|⇠)).

1

https://bit.ly/l2hmc2
mailto:foremans@anl.gov
mailto:xjin@anl.gov
mailto:osborn@alcf.anl.gvo
https://github.com/saforem2/l2hmc-qcd
https://github.com/saforem2/ICLR_SimDL_l2hmc-qcd
https://github.com/saforem2/ICLR_SimDL_l2hmc-qcd
https://www.github.com/saforem2/l2hmc-qcd
https://bit.ly/l2hmc2
https://arxiv.org/abs/2101.08176
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.034515
https://arxiv.org/abs/2008.05456
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121601
https://github.com/saforem2/ICLR_SimDL_l2hmc-qcd

